Surface Activation Strategies to Enhance Oral Bioavailability of Poorly Biopharmaceutical Drugs: A Narrative Review
Keywords:
surface activation, oral bioavailability, nanotechnology, solubility enhancement, permeability improvementAbstract
Surface activation has emerged as a promising strategy for improving the oral performance of drugs with poor biopharmaceutical properties. Many oral drugs face limitations in solubility, permeability, and stability in the gastrointestinal environment, which restrict their absorption and reduce therapeutic effectiveness. This review aims to summarize current approaches used to enhance oral bioavailability through surface modification of drug particles and delivery systems. A narrative methodology was used to examine studies involving conventional additives as well as advanced nanotechnology platforms. The findings show that surfactants, polymers, lipid-based excipients, and permeation enhancers can significantly increase solubility, dissolution rate, and epithelial transport. Nanotechnology approaches, including polymeric nanoparticles, nanocrystals, lipid nanocarriers, and stimuli-responsive systems, offer more precise control over particle behavior and demonstrate consistent improvements in permeability and gastrointestinal stability. Despite these advantages, challenges related to safety, long-term toxicity, and regulatory evaluation remain. Overall, the reviewed evidence indicates that surface activation represents an effective and adaptable approach for enhancing oral bioavailability and holds strong potential for future development of more efficient oral drug delivery systems.
References
Ali, S. A., Alhakamy, N. A., Hosny, K. M., Alfayez, E., Bukhary, D. M., Safhi, A. Y., Badr, M. Y., Mushtaq, R. Y., Alharbi, M., Huwaimel, B., Alissa, M., Alshehri, S., Alamri, A. H., & Alqahtani, T. (2022). Rapid oral transmucosal delivery of zaleplon–lavender oil utilizing self-nanoemulsifying lyophilized tablets technology: Development, optimization and pharmacokinetic evaluation. Drug Delivery, 29. https://doi.org/10.1080/10717544.2022.2115165
Arshad, R., Tabish, T. A., Kiani, M. H., Ibrahim, I. M., Shahnaz, G., Rahdar, A., Kang, M., Pandey, S., Arshad, R., Tabish, T. A., Kiani, M. H., Ibrahim, I. M., Shahnaz, G., Rahdar, A., Kang, M., & Pandey, S. (2021). A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials, 11(5). https://doi.org/10.3390/nano11051086
Awais, S., Farooq, N., Muhammad, S. A., El-Serehy, H. A., Ishtiaq, F., Afridi, M., Ahsan, H., Ullah, A., Nadeem, T., Sultana, K., Awais, S., Farooq, N., Muhammad, S. A., El-Serehy, H. A., Ishtiaq, F., Afridi, M., Ahsan, H., Ullah, A., Nadeem, T., & Sultana, K. (2023). Enhanced Solubility and Stability of Aripiprazole in Binary and Ternary Inclusion Complexes Using Hydroxy Propyl Beta Cyclodextrin (HPβCD) and L-Arginine. Molecules, 28(9). https://doi.org/10.3390/molecules28093860
Bakhaidar, R. B., Naveen, N. R., Basim, P., Murshid, S. S., Kurakula, M., Alamoudi, A. J., Bukhary, D. M., Jali, A. M., Majrashi, M. A., Alshehri, S., Alissa, M., Ahmed, R. A., Bakhaidar, R. B., Naveen, N. R., Basim, P., Murshid, S. S., Kurakula, M., Alamoudi, A. J., Bukhary, D. M., … Ahmed, R. A. (2022). Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin. Polymers, 14(23). https://doi.org/10.3390/polym14235184
Barbari, G. R., Dorkoosh, F. A., Amini, M., Sharifzadeh, M., Atyabi, F., Balalaie, S., Tehrani, N. R. T. &Morteza R., & Tehrani, M. R. (2017). RETRACTED ARTICLE: A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides: International Journal of Nanomedicine: Vol 12, No null. International Journal of Nanomedicine, 12. https://doi.org/10.2147/IJN.S367798
Beg, S., Sandhu, P. S., Batra, R. S., Khurana, R. K., & Singh, B. (2015). QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Delivery, 22(6), 765–784. https://doi.org/10.3109/10717544.2014.900154
Ghanem, H. A., Elsayed, M. M. A., Gad, S., Ghorab, M., Abd Elwahab, N. H., El hakim Ramadan, A., Alsunbul, M., Motaal, A. A., & Nasr, A. M. (2025). Enhanced oral bioavailability of Irbesartan via nano-bilosomes: A potential breakthrough in hypertension treatment. OpenNano, 26, 100255. https://doi.org/10.1016/j.onano.2025.100255
Guada, M., Sebastián, V., Irusta, S., Feijoó, E., Dios-Viéitez, M. del C., & Blanco-Prieto, M. J. (2015). Lipid nanoparticles for cyclosporine A administration: Development, characterization, and in vitro evaluation of their immunosuppression activity. International Journal of Nanomedicine, 10, 6541–6553. https://doi.org/10.2147/IJN.S90849
Husni, A. (2017). Artikel Tinjauan: Teknik Meningkatkan Kelarutan Obat. Farmaka, 49–57.
Irwanto, M. F. (2025). Peningkatan Kelarutan dan Kecepatan Disolusi Obat dengan Metode Dispersi Padat untuk Meningkatkan Bioavailabilitas Obat: Review Artikel. Jurnal Riset Sains Dan Kesehatan Indonesia, 2(1), 11–20. https://doi.org/10.69930/jrski.v2i1.275
Kamei, N., Tamiwa, H., Miyata, M., Haruna, Y., Matsumura, K., Ogino, H., Hirano, S., Higashiyama, K., Takeda-Morishita, M., Kamei, N., Tamiwa, H., Miyata, M., Haruna, Y., Matsumura, K., Ogino, H., Hirano, S., Higashiyama, K., & Takeda-Morishita, M. (2018). Hydrophobic Amino Acid Tryptophan Shows Promise as a Potential Absorption Enhancer for Oral Delivery of Biopharmaceuticals. Pharmaceutics, 10(4). https://doi.org/10.3390/pharmaceutics10040182
Kenechukwu, F. C., Ugwu, K. C., Offorbuike, C. S., Ojukwu, E. M., Gugu, T. H., Eze, R. E., Agbo, C. P., Momoh, M. A., Onah, A. I., Nwagwu, C. S., Ugorji, O. L., Ossai, E. C., Ugwu, C. E., Akpa, P. A., Echezona, A. C., Uzondu, S. W., Ugorji, C. O., Ugwuoke, W. I., Srichana, T., & Attama, A. A. (2025). Solidified reverse micellar solution-based chitosan-coated solid lipid nanoparticles as a new approach to enhance oral delivery of artemether in malaria treatment. BMC Chemistry, 19(1), 64. https://doi.org/10.1186/s13065-025-01422-4
Liu, P., Chen, G., & Zhang, J. (2022). A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 27(4), 1372. https://doi.org/10.3390/molecules27041372
Öztürk, A. A., Yenilmez, E., Özarda, M. G., Öztürk, A. A., Yenilmez, E., & Özarda, M. G. (2019). Clarithromycin-Loaded Poly (Lactic-co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers, 11(10). https://doi.org/10.3390/polym11101632
Parvez, S., Yadagiri, G., Karole, A., Singh, O. P., Verma, A., Sundar, S., & Mudavath, S. L. (2020). Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-leishmanial Activity. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.570573
Salman, S., Firawati, F., Setiawan, D., Nuradi, N., & Muzayyidah, M. (2024). Farmakokinetika. CV. Eurika Media Aksara.
Schmidt, M. R., Ebert, M. L., Kiechle, M. A., Zöller, K., Laffleur, F., & Bernkop-Schnürch, A. (2025a). Self-Emulsifying delivery systems for oral administration of exenatide: Hydrophobic ion pairs vs. Dry reverse micelles. International Journal of Pharmaceutics, 678, 125711. https://doi.org/10.1016/j.ijpharm.2025.125711
Schmidt, M. R., Ebert, M. L., Kiechle, M. A., Zöller, K., Laffleur, F., & Bernkop-Schnürch, A. (2025b). Self-Emulsifying delivery systems for oral administration of exenatide: Hydrophobic ion pairs vs. Dry reverse micelles. International Journal of Pharmaceutics, 678, 125711. https://doi.org/10.1016/j.ijpharm.2025.125711
Sopian, A., N, A., & Imnasari, R. (2024). Biofarmasetika & Farmakokinetika. CV. Widina Media Utama.
Spleis, H., Sandmeier, M., Claus, V., & Bernkop-Schnürch, A. (2023). Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Advances in Colloid and Interface Science, 313, 102848. https://doi.org/10.1016/j.cis.2023.102848
Spósito, P. Á., Mazzeti, A. L., de Oliveira Faria, C., Urbina, J. A., Pound-Lana, G., Bahia, M. T., & Mosqueira, V. F. (2017). Ravuconazole self-emulsifying delivery system: In vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity. International Journal of Nanomedicine, 12, 3785–3799. https://doi.org/10.2147/IJN.S133708
Subongkot, T., & Ngawhirunpat, T. (2017). Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. International Journal of Nanomedicine, 12. https://doi.org/10.2147/IJN.S142503
Talianu, M.-T., Dinu-Pîrvu, C.-E., Ghica, M. V., Anuţa, V., Prisada, R. M., Popa, L., Talianu, M.-T., Dinu-Pîrvu, C.-E., Ghica, M. V., Anuţa, V., Prisada, R. M., & Popa, L. (2024). Development and Characterization of New Miconazole-Based Microemulsions for Buccal Delivery by Implementing a Full Factorial Design Modeling. Pharmaceutics, 16(2). https://doi.org/10.3390/pharmaceutics16020271
Werner, J., Umstätter, F., Hertlein, T., Mühlberg, E., Beijer, B., Wohlfart, S., Zimmermann, S., Haberkorn, U., Ohlsen, K., Fricker, G., Mier, W., & Uhl, P. (2024). Oral Delivery of the Vancomycin Derivative FU002 by a Surface-Modified Liposomal Nanocarrier. Advanced Healthcare Materials, 13(14). https://doi.org/10.1002/adhm.202303654
Yin, J., Xiang, C., Wang, P., Yin, Y., & Hou, Y. (2017). Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. International Journal of Nanomedicine, 12, 2923–2931. https://doi.org/10.2147/IJN.S131167
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurhaliza Tri Wulandari Suparto, Novialita Ivanka Ramadhani, Anisa Laelatul Badriah, Povi Monica, Davina Anggraeni Putri, Mariatus Syifa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercial purposes.
- Adaptation — mixing, changing, and developing materials for any purpose, even commercial ones.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.






