Pemanfaatan Zebrafish sebagai Model High-Throughput Screening untuk Penemuan dan Pengembangan Obat Anti-inflamasi
Keywords:
zebrafish, inflammatory model, drug discovery, high-throughput screeningAbstract
The development of anti-inflammatory drugs requires test models capable of presenting comprehensive immune responses, and zebrafish have become one of the most widely used animal models due to their mammalian-like immune system and compatibility with high-throughput in vivo screening. This study aims to identify, review, and compare various methods for inducing inflammation in zebrafish through a literature analysis of PubMed, ScienceDirect, SpringerLink, MDPI, and Google Scholar over the past ten years using keywords related to “zebrafish,” “inflammation,” “inflammation model,” “high-throughput screening,” “drug discovery,” and “anti-inflammatory agents.” Three main approaches to inducing inflammation in zebrafish were identified: wounding-induced, chemically-induced, and mutation-induced. Chemically induced models are the most commonly applied because they are easy to standardize and suitable for testing large numbers of compounds, whereas wounding-induced models enable real-time observation of leukocyte migration, and mutation-induced models are used to investigate chronic inflammation and specific molecular pathways. Overall, zebrafish represent an effective and relevant biological model for inflammation research and drug discovery, with diverse induction approaches that enhance sensitivity, screening throughput, and the capacity to study cellular mechanisms and pharmacological effects, thereby potentially accelerating the preclinical development of anti-inflammatory drugs.
References
Bernal-Bermúdez, B., Martínez-López, A., Martínez-Morcillo, F. J., Tyrkalska, S. D., Martínez-Menchón, T., Mesa-del-Castillo, P., Cayuela, M. L., Mulero, V., & García-Moreno, D. (2023). A zebrafish model of Ifih1-driven Aicardi–Goutières syndrome reproduces the interferon signature and the exacerbated inflammation of patients. Frontiers in Immunology, 14, 1294766. https://doi.org/10.3389/fimmu.2023.1294766
Bousquet, M. S., Ratnayake, R., Pope, J. L., Chen, Q.-Y., Zhu, F., Chen, S., Carney, T. J., Gharaibeh, R. Z., Jobin, C., Paul, V. J., & Luesch, H. (2020). Seaweed natural products modify the host inflammatory response via Nrf2 signaling and alter colon microbiota composition and gene expression. Free Radical Biology and Medicine, 146, 306–323. https://doi.org/10.1016/j.freeradbiomed.2019.09.013
Carletti, A., Cardoso, C., Lobo-Arteaga, J., Sales, S., Juliao, D., Ferreira, I., Chainho, P., Dionísio, M. A., Gaudêncio, M. J., Afonso, C., Lourenço, H., Cancela, M. L., Bandarra, N. M., & Gavaia, P. J. (2022). Antioxidant and Anti-inflammatory Extracts From Sea Cucumbers and Tunicates Induce a Pro-osteogenic Effect in Zebrafish Larvae. Frontiers in Nutrition, 9, 888360. https://doi.org/10.3389/fnut.2022.888360
Doke, S. K., & Dhawale, S. C. (2015). Alternatives to animal testing: A review. Saudi Pharmaceutical Journal, 23(3), 223–229. https://doi.org/10.1016/j.jsps.2013.11.002
Duarte Da Silva, K. C., Carneiro, W. F., Virote, B. D. C. R., Santos, M. D. F., De Oliveira, J. P. L., Castro, T. F. D., Bertolucci, S. K. V., & Murgas, L. D. S. (2024). Evaluation of the Anti-Inflammatory and Antioxidant Potential of Cymbopogon citratus Essential Oil in Zebrafish. Animals, 14(4), 581. https://doi.org/10.3390/ani14040581
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0
Gómez-Abenza, E., Ibáñez-Molero, S., García-Moreno, D., Fuentes, I., Zon, L. I., Mione, M. C., Cayuela, M. L., Gabellini, C., & Mulero, V. (2019a). Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. Journal of Experimental & Clinical Cancer Research, 38(1), 405. https://doi.org/10.1186/s13046-019-1389-3
Gómez-Abenza, E., Ibáñez-Molero, S., García-Moreno, D., Fuentes, I., Zon, L. I., Mione, M. C., Cayuela, M. L., Gabellini, C., & Mulero, V. (2019b). Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. Journal of Experimental & Clinical Cancer Research, 38(1), 405. https://doi.org/10.1186/s13046-019-1389-3
Gong, L., Yu, L., Gong, X., Wang, C., Hu, N., Dai, X., Peng, C., & Li, Y. (2020). Exploration of anti-inflammatory mechanism of forsythiaside A and forsythiaside B in CuSO4-induced inflammation in zebrafish by metabolomic and proteomic analyses. Journal of Neuroinflammation, 17(1), 173. https://doi.org/10.1186/s12974-020-01855-9
Guo, D.-L., Chen, J.-F., Tan, L., Jin, M.-Y., Ju, F., Cao, Z.-X., Deng, F., Wang, L.-N., Gu, Y.-C., & Deng, Y. (2019). Terpene Glycosides from Sanguisorba officinalis and Their Anti-Inflammatory Effects.
He, M., Halima, M., Xie, Y., Schaaf, M. J. M., Meijer, A. H., & Wang, M. (2020). Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae. Cells, 9(5), 1107. https://doi.org/10.3390/cells9051107
Hernández-Silva, D., Cantón-Sandoval, J., Martínez-Navarro, F. J., Pérez-Sánchez, H., De Oliveira, S., Mulero, V., Alcaraz-Pérez, F., & Cayuela, M. L. (2022). Senescence-Independent Anti-Inflammatory Activity of the Senolytic Drugs Dasatinib, Navitoclax, and Venetoclax in Zebrafish Models of Chronic Inflammation. International Journal of Molecular Sciences, 23(18), 10468. https://doi.org/10.3390/ijms231810468
Husnul Khotimah, Fathina Zahrani Rahmaniar, Fatimah Az Zahra, Rabjhany Anaqah, Shahdevi Nandar Kurniawan, Masruroh Rahayu, & Hikmawan Wahyu Sulistomo. (2024). Diverse perspectives in zebrafish seizure models: An exploration of chemical inducers. World Journal of Advanced Research and Reviews, 21(3), 865–877. https://doi.org/10.30574/wjarr.2024.21.3.0734
Kabadi, A., McDonnell, E., Frank, C. L., & Drowley, L. (2020). Applications of Functional Genomics for Drug Discovery. SLAS Discovery, 25(8), 823–842. https://doi.org/10.1177/2472555220902092
Kim, H., Alten, R., Avedano, L., Dignass, A., Gomollón, F., Greveson, K., Halfvarson, J., Irving, P. M., Jahnsen, J., Lakatos, P. L., Lee, J., Makri, S., Parker, B., Peyrin-Biroulet, L., Schreiber, S., Simoens, S., Westhovens, R., Danese, S., & Jeong, J. H. (2020). The Future of Biosimilars: Maximizing Benefits Across Immune-Mediated Inflammatory Diseases. Drugs, 80(2), 99–113. https://doi.org/10.1007/s40265-020-01256-5
Koga, R. D. C. R., De Souza, A. A., Sales, P. F., Ferreira, A. M., De Souza, G. C., & Carvalho, J. C. T. (2025). Anti-Inflammatory and Antinociceptive Potential of Hydroethanolic Extract of Bauhinia guianensis Aubl. In Zebrafish (Danio rerio). Nutraceuticals, 5(3), 25. https://doi.org/10.3390/nutraceuticals5030025
Lanzarin, G. A. B., Félix, L. M., Monteiro, S. M., Ferreira, J. M., Oliveira, P. A., & Venâncio, C. (2023). Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects of Thymol and 24-Epibrassinolide in Zebrafish Larvae. Antioxidants, 12(6), 1297. https://doi.org/10.3390/antiox12061297
Latrille, T., Joseph, J., Hartasánchez, D. A., & Salamin, N. (2024). Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLOS Genetics, 20(12), e1011536. https://doi.org/10.1371/journal.pgen.1011536
LeBert, D. C., Squirrell, J. M., Rindy, J., Broadbridge, E., Lui, Y., Zakrzewska, A., Eliceiri, K. W., Meijer, A. H., & Huttenlocher, A. (2015). Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development, 142(12), 2136–2146. https://doi.org/10.1242/dev.121160
Liu, W., Yu, H., Gurbazar, D., Rinchindorj, D., Kang, W., Qi, C., Chen, H., Chang, X., You, H., Han, Y., Li, Z., R. G., A., & Dong, W. (2024). Anti-inflammatory effects and beneficial effects of the feed additive Urtica cannabina L. in zebrafish. PLOS ONE, 19(7), e0307269. https://doi.org/10.1371/journal.pone.0307269
Lubin, A., Otterstrom, J., Hoade, Y., Bjedov, I., Stead, E., Whelan, M., Gestri, G., Paran, Y., & Payne, E. (2021). A versatile, automated and high-throughput drug screening platform for zebrafish embryos. Biology Open, 10(9), bio058513. https://doi.org/10.1242/bio.058513
Marques Fernandes, S., Watanabe, M., & Fernandes Vattimo, M. D. F. (2021). Inflammation: Improving understanding to prevent or ameliorate kidney diseases. Journal of Venomous Animals and Toxins Including Tropical Diseases. https://doi.org/10.1590/1678-9199-JVATITD-2020-0162
Montero-Lobato, Z., Vázquez, M., Navarro, F., Fuentes, J. L., Bermejo, E., Garbayo, I., Vílchez, C., & Cuaresma, M. (2018). Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae. Marine Drugs, 16(12), 478. https://doi.org/10.3390/md16120478
Nguyen, T. H., Le, H. D., Nguyen Thi Kim, T., Pham The, H., Nguyen, T. M., Cornet, V., Lambert, J., & Kestemont, P. (2020). Anti–Inflammatory and Antioxidant Properties of the Ethanol Extract of Clerodendrum Cyrtophyllum Turcz in Copper Sulfate-Induced Inflammation in Zebrafish. Antioxidants, 9(3), 192. https://doi.org/10.3390/antiox9030192
Oprişoreanu, A.-M., Ryan, F., Richmond, C., Dzekhtsiarova, Y., Carragher, N. O., Becker, T., David, S., & Becker, C. G. (2023). Drug screening in zebrafish larvae reveals inflammation-related modulators of secondary damage after spinal cord injury in mice. Theranostics, 13(8), 2531–2551. https://doi.org/10.7150/thno.81332
Pratiwi, D. M. N., Yuliani, S. H., & Samirana, P. O. (2024). Studies on anti-inflammatory activity and wound-healing property of secondary metabolite of Anredera cordifolia (Ten.) Steenis leaves: A review. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2025.206872
Raghupathy, S., Vaidyanathan, L., & Sivaswamy, L. (2017). Adult Zebrafish Model of Wound Inflammation to Study Wound Healing Potency of Curcuma longa Extracts Title changed as suggested by the reviewer. Annual Research & Review in Biology, 18(3), 1–8. https://doi.org/10.9734/ARRB/2017/35910
Rai, M., Sinha, A., & Roy, S. (2024). A Review On The Chemical-Induced Experimental Model Of Cardiotoxicity. International Journal of Pharmacy and Pharmaceutical Sciences, 1–11. https://doi.org/10.22159/ijpps.2024v16i7.51028
Rasmussen, S. K., & Jain, S. M. (2024). Editorial: Mutational breeding: from induced mutations to site-directed mutagenesis. Frontiers in Plant Science, 15, 1511363. https://doi.org/10.3389/fpls.2024.1511363
Robertson, A. L., Ogryzko, N. V., Henry, K. M., Loynes, C. A., Foulkes, M. J., Meloni, M. M., Wang, X., Ford, C., Jackson, M., Ingham, P. W., Wilson, H. L., Farrow, S. N., Solari, R., Flower, R. J., Jones, S., Whyte, M. K. B., & Renshaw, S. A. (2016). Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen. Disease Models & Mechanisms, 9(6), 621–632. https://doi.org/10.1242/dmm.024935
Schwartz, A. V., Sant, K. E., & George, U. Z. (2025). Integrating network analysis and machine learning to elucidate chemical-induced pancreatic toxicity in zebrafish embryos. Toxicological Sciences, 206(2), 330–353. https://doi.org/10.1093/toxsci/kfaf069
Sohail, R., Mathew, M., Patel, K. K., Reddy, S. A., Haider, Z., Naria, M., Habib, A., Abdin, Z. U., Razzaq Chaudhry, W., & Akbar, A. (2023). Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus. https://doi.org/10.7759/cureus.37080
Sreesivasakthi, A., Devi, R., Srinivasan, Dr. R., Jayaramakani, N., David, E. S., & Dhavamanikandan, A. (2024). Zebrafish As A Model Organism For Drug Screening And Development. In Dr. S. Pishawikar, Dr. P. Singh, Mrs. D. Raman, Dr. S. Deshpande, Dr. M. Bhateria, Dr. R. B. Pandit, Mr. C. Nayak, Mrs. N. V. N. Jyothi, Dr. M. Adikwu, Dr. N. Hussain, Dr. M. V. Suryawanshi, & Mrs. S. Desai (Eds), Futuristic Trends in Pharmacy & Nursing Volume 3 Book 16 (First, pp. 132–150). Iterative International Publishers, Selfypage Developers Pvt Ltd. https://doi.org/10.58532/V3BKPN16P1CH12
Varshney, G. K., Pei, W., LaFave, M. C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., Harper, U., Huang, S. C., Prakash, A., Chen, W., Sood, R., Ledin, J., & Burgess, S. M. (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 25(7), 1030–1042. https://doi.org/10.1101/gr.186379.114
Wilhelm, K. ‐P., Wilhelm, D., & Bielfeldt, S. (2017). Models of wound healing: An emphasis on clinical studies. Skin Research and Technology, 23(1), 3–12. https://doi.org/10.1111/srt.12317
Xie, Y., Meijer, A. H., & Schaaf, M. J. M. (2021). Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Frontiers in Cell and Developmental Biology, 8, 620984. https://doi.org/10.3389/fcell.2020.620984
Zanandrea, R., Bonan, C. D., & Campos, M. M. (2020). Zebrafish as a model for inflammation and drug discovery. Drug Discovery Today, 25(12), 2201–2211. https://doi.org/10.1016/j.drudis.2020.09.036
Zhang, P., Liu, N., Xue, M., Zhang, M., Xiao, Z., Xu, C., Fan, Y., Liu, W., Qiu, J., Zhang, Q., & Zhou, Y. (2023). Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). International Journal of Molecular Sciences, 24(10), 8518. https://doi.org/10.3390/ijms24108518
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yuni Antika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercial purposes.
- Adaptation — mixing, changing, and developing materials for any purpose, even commercial ones.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.






