A Review: Comparison of PEGylation Methods in Efforts to Improve the Bioavailability Profile of Oral Products Based on Insulin, Peptides, and Therapeutic Proteins

Authors

  • Halim Fatan Machmud Universitas Jenderal Soedirman
  • Salsa Aulia Rossyana
  • Alyaa Sekar Kemuning
  • Early Syifa Insani
  • Rizqi Amalia

Keywords:

PEGylation, biopharmaceutical, biopharmaceuticals, oral

Abstract

PEGylation is a promising strategy for improving the oral delivery of biopharmaceuticals, which often experience instability, enzymatic degradation, and low permeability in the gastrointestinal tract. This review aims to evaluate various PEGylation approaches and their effectiveness in improving the bioavailability profile of orally administered biopharmaceuticals. The study employed a narrative literature review method, collecting research articles from PubMed and ScienceDirect over the past ten years. Selection was performed using predetermined inclusion and exclusion criteria, followed by full-text assessment and thematic synthesis. The results of the study show that PEGylation can improve gastrointestinal stability, protect against proteolysis, modify physicochemical properties, and increase cellular uptake through mechanisms such as steric protection, increased hydrophilicity, and the formation of PEG-based delivery systems. Various PEG systems, including nanocarriers, niosomes, conjugated polymers, and microbial platforms, generally showed better structural and functional integrity compared to formulations without PEGylation. Several studies also reported increased mucosal adhesion, longer intestinal retention time, and stable biological activity under simulated digestive conditions. Overall, PEGylation has proven to be an effective and versatile modification strategy to support the development of oral biopharmaceuticals.

References

Abu Abed, O. S., Chaw, C. S., Williams, L., & Elkordy, A. A. (2021). PEGylated Polymeric Nanocapsules for Oral Delivery of Trypsin Targeted to The Small Intestines. International Journal of Pharmaceutics, 592, 120094. https://doi.org/10.1016/j.ijpharm.2020.120094.

Abu Abed, O. S., Chaw, C., Williams, L., & Elkordy, A. A. (2018). Lysozyme and DNase I loaded poly (D, L lactide-co-caprolactone) nanocapsules as an oral delivery system. Scientific reports, 8(1), 13158. https://doi.org/10.1038/s41598-018-31303-x.

Baral, K. C., & Choi, K. Y. (2025). Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Pharmaceutics, 17(4), 397. https://doi.org/10.3390/pharmaceutics17040397.

Chaturvedi, K., Ganguly, K., Kulkarni, A. R., Rudzinski, W. E., Krauss, L., Nadagouda, M. N., & Aminabhavi, T. M. (2015). Oral Insulin Delivery Using Deoxycholic Acid Conjugated PEGylated Polyhydroxybutyrate Co-Polymeric Nanoparticles. Nanomedicine (London, England), 10(10), 1569–1583. https://doi.org/10.2217/nnm.15.36.

Chen, C., Guilbaud, L., Marotti, V., Zhang, W., Domingues, I., Yagoubi, H., Vints, K., Xu, Y., & Beloqui, A. (2025). An Antioxidant Metal-Organic Framework with Functional Coatings for Oral Anti-TNF-α Antibody Delivery in Inflammatory Bowel Disease Treatment. Journal of Controlled Release: Official Journal of The Controlled Release Society, 389, 114411. https://doi.org/10.1016/j.jconrel.2025.114411.

Coolich, M. K., Lanier, O. L., Cisneros, E., & Peppas, N. A. (2023). PEGylated Insulin Loaded Complexation Hydrogels for Protected Oral Delivery. Journal of Controlled Release: Official Journal of The Controlled Release Society, 364, 216–226. https://doi.org/10.1016/j.jconrel.2023.10.020.

Desai, D., & Shende, P. (2022). Improvement in Therapeutic Activity and Stability of Neuropeptide Y Using PEGylated Polyplexes in MCF-7 and MDA-MB-231 Cells. Materials Today Communications, 33, 104561. https://doi.org/10.1016/j.mtcomm.2022.104561.

Digiacomo, L., Renzi, S., Pirrottina, A., Amenitsch, H., De Lorenzi, V., Pozzi, D., & Caracciolo, G. (2024). PEGylation-Dependent Cell Uptake of Lipid Nanoparticles Revealed by Spatiotemporal Correlation Spectroscopy. ACS Pharmacology & Translational Science, 7(10), 3004–3010. https://pubs.acs.org/doi/10.1021/acsptsci.4c00419.

Feng, S., Raimi-Abraham, B. T., & Vllasaliu, D. (2025). PEG-PLGA Nanoparticles Transport Across In Vitro Intestinal Epithelial Models and Show Potential for Oral Delivery of Antibodies in Inflammatory Bowel Disease. Journal of Drug Delivery Science and Technology, 108, 106925. https://doi.org/10.1016/j.jddst.2025.106925.

Ghosh, D., Peng, X., Leal, J., & Mohanty, R. (2018). Peptides as Drug Delivery Vehicles Across Biological Barriers. Journal of Pharmaceutical Investigation, 48(1), 89–111. https://doi.org/10.1007/s40005-017-0374-0.

Haddadzadegan, S., To, D., Matteo Jörgensen, A., Wibel, R., Laffleur, F., & Bernkop-Schnürch, A. (2024). Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. Small (Weinheim an der Bergstrasse, Germany), 20(27), e2307618. https://doi.org/10.1002/smll.202307618.

Homayun, B., Lin, X., & Choi, H. J. (2019). Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics, 11(3), 129. https://doi.org/10.3390/pharmaceutics11030129.

Imperiale, J. C., Schlachet, I., Lewicki, M., Sosnik, A., & Biglione, M. M. (2019). Oral Pharmacokinetics of a Chitosan-based Nano-Drug Delivery System of Interferon Alpha. Polymers, 11(11), 1862. https://doi.org/10.3390/polym11111862.

Kang, Y. S., Jung, H. J., Oh, J. S., & Song, D. Y. (2016). Use of PEGylated Immunoliposomes to Deliver Dopamine Aross The Blood–Brain Barrier in A Rat Model of Parkinson's Disease. CNS Neuroscience & Therapeutics, 22(10), 817–823. https://doi.org/10.1111/cns.12580

Li, Y., Abbaspourrad, A., & Wang, S. (2025). Enhancing The Gastrointestinal Stability of Phycocyanin through Modified PEGylation: Prospects for Oral Anticancer Treatment. International Journal of Biological Macromolecules, 330, 147947. https://doi.org/10.1016/j.ijbiomac.2025.147947.

Liu, Y., Hu, Y., & Wang, S. (2024). Cellular Uptake and Transport Mechanism Investigations of PEGylated Niosomes for Improving the Oral Delivery of Thymopentin. Journal of Drug Delivery Science and Technology, 87, 105123. https://doi.org/10.3390/pharmaceutics16030397.

Ghosh, D., Peng, X., Leal, J., & Mohanty, R. (2018). Peptides as Drug Velivery Vehicles Across Biological Barriers. Journal of pharmaceutical investigation, 48(1), 89–111. https://doi.org/10.1007/s40005-017-0374-0.

Makharadze, D., del Valle, L. J., Katsarava, R., & Puiggalí, J. (2025). The Art of PEGylation: From Simple Polymer to Sophisticated Drug Delivery System. International Journal of Molecular Sciences, 26(7), 3102. https://doi.org/10.3390/ijms26073102.

Momoh, M. A., Emmanuel, O. C., Onyeto, A. C., Darlington, Y., Kenechukwu, F. C., Ofokansi, K. C., & Attama, A. A. (2019). Preparation of Snail Cyst and PEG-4000 Composite Carriers via PEGylation for Oral Delivery of Insulin: An In Vitro and In Vivo Evaluation. Tropical Journal of Pharmaceutical Research, 18(5), 919–926. https://doi.org/10.4314/tjpr.v18i5.2.

Mumuni, M., E. Calister, U., Aminu, N., C. Franklin, K., Musiliu Oluseun, A., Usman, M., & Díaz Díaz, D. (2020). Mucin-grafted Polyethylene Glycol Microparticles Enable Oral Insulin Delivery for Improving Diabetic Treatment. Applied sciences, 10(8), 2649. https://doi.org/10.3390/app10082649.

Niu, Z., Samaridou, E., Jaumain, E., Coëne, J., Ullio, G., Shrestha, N., Garcia, J., Durán-Lobato, M., Tovar, S., Santander-Ortega, M. J., Lozano, M. V., Arroyo-Jimenez, M. M., Ramos-Membrive, R., Peñuelas, I., Mabondzo, A., Préat, V., Teixidó, M., Giralt, E., & Alonso, M. J. (2018). PEG-PGA Enveloped Octaarginine-Peptide Nanocomplexes: An Oral Peptide Delivery Strategy. Journal of Controlled Release, 276, 125–139. https://doi.org/10.1016/j.jconrel.2018.03.004.

Ogbonna, J. I., Momoh, M. A., Agbo, C. P., Abdulmumin, H., Chukwu, C. C., Alfa, J., & Youngson, D. C. (2025). Development of Double-Coated Microparticles for Improved Oral Insulin Delivery in Diabetes Management. Tropical Journal of Pharmaceutical Research, 24(2), 141–151. https://doi.org/10.4314/tjpr.v24i2.2.

Oyama, D., Matayoshi, K., Kanetaka, S., Nitta, C., Koide, H., Minami, K., & Asai, T. (2025). Enhanced Oral Insulin Delivery with Charge-reversible Lipid Nanoparticles. Biochemical and Biophysical Research Communications, 750, 151420. https://doi.org/10.1016/j.bbrc.2025.151420.

Pangua, C., Espuelas, S., Martínez-Ohárriz, M. C., Vizmanos, J. L., & Irache, J. M. (2024). Mucus-Penetrating and Permeation Enhancer Albumin-Based Nanoparticles for Oral Delivery of Macromolecules: Application to Bevacizumab. Drug delivery and Translational Research, 14(5), 1189–1205. https://doi.org/10.1007/s13346-023-01454-0.

Patel, M., Park, J. K., & Jeong, B. (2023). Rediscovery of Poly(ethylene glycol)s as a Cryoprotectant for Mesenchymal Stem Cells. Biomaterials research, 27(1), 17. https://doi.org/10.1186/s40824-023-00356-z.

Postina, A., To, D., Zöller, K., & Bernkop-Schnürch, A. (2025). Oral Peptide Drug Delivery: Design of SEDDS Providing A Protective Effect Against Intestinal Membrane-Bound Enzymes. Drug Delivery and Translational Research, 10.1007/s13346-025-01852-6. https://doi.org/10.1007/s13346-025-01852-6.

Sarhadi, S., Moosavian, S. A., Mashreghi, M., Rahiman, N., Golmohamadzadeh, S., Tafaghodi, M., Sadri, K., Chamani, J., & Jaafari, M. R. (2022). B12-functionalized PEGylated Liposomes for the Oral Delivery of Insulin: In Vitro and In Vivo Studies. Journal of Drug Delivery Science and Technology, 69, 103141. https://doi.org/10.1016/j.jddst.2022.103141.

Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as A Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Advanced Drug Delivery Reviews, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012.

Tenchov, R., Sasso, J. M., & Zhou, Q. A. (2023). PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjugate chemistry, 34(6), 941–960. https://doi.org/10.1021/acs.bioconjchem.3c00174.

Yamazoe, E., Fang, J. Y., & Tahara, K. (2021). Oral Mucus-penetrating PEGylated Liposomes to Improve Drug Absorption: Differences in the Interaction Mechanisms of a Mucoadhesive Liposome. International Journal of Pharmaceutics, 593, 120148. https://doi.org/10.1016/j.ijpharm.2020.120148.

Yao, Q., Liu, T., Wen, J., Yang, Q., Li, Y., Yan, H., Zhang, L., Zhu, B., Tian, Y., Wang, Y., Yang, X., Shi, X., Zhang, H., Liu, Y., Li, X., & Shan, W. (2025). SpyTag-PEGylated probiotics delivering IL-1Ra Modulate Gut–Lung Crosstalk to Mitigate Septic Lung Injury. Journal of Controlled Release, 386, 114163. https://doi.org/10.1016/j.jconrel.2025.114163.

Yazdi, M. K., Farmoudeh, A., Bin Tahir, H., Ghorbani, M., Hanif, S., Raouf Jorjani, M., & Homayouni, A. (2020). Folate Targeted PEGylated Liposomes for The Oral Delivery of Insulin: In Vitro and In Vivo Studies. Life Sciences, 267, 118943. https://doi.org/10.1016/j.colsurfb.2020.111203.

Downloads

Published

2025-02-20

How to Cite

Halim Fatan Machmud, Salsa Aulia Rossyana, Alyaa Sekar Kemuning, Early Syifa Insani, & Rizqi Amalia. (2025). A Review: Comparison of PEGylation Methods in Efforts to Improve the Bioavailability Profile of Oral Products Based on Insulin, Peptides, and Therapeutic Proteins. Jurnal Apoteker Indonesia, 2(1), 123–130. Retrieved from https://journal.talentainsan.com/index.php/jai/article/view/26